緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的1篇淺談鍋爐發電機組的節能技術范文,希望它們能為您的寫作提供參考和啟發。
摘 要:循環流化床鍋爐(CFB)因本體自身或輔機系統出現故障,導致鍋爐BT(Boiler Trip),即停爐不停機,對整臺機組的運行產生較大的影響,該文主要針對這個運行過程對汽輪機及發電機系統安全、壽命影響進行描述、分析,對越來越多的循環流化床機組有一定的借鑒和指導。
關鍵詞:循環流化床鍋爐 停爐不停機 汽輪機及發電機安全、壽命
鍋爐BT(Boiler Trip)即停爐不停機,是指循環流化床鍋爐因本體自身或輔機系統出現故障,鍋爐風煙系統風機停運,爐膛內暫處于燜火工況,用燜火狀態下的余熱為蒸汽系統供汽,在這種情況下,汽輪發電機仍繼續帶低負荷并網運行,為了維持更長時間,負荷可保持在2MW―3MW運行。在較短時間內將缺陷處理后,恢復鍋爐風煙系統風機運行,逐步將機組負荷帶到要求的數值,恢復正常運行方式。
1 循環流化床鍋爐BT后,對汽輪發電機組系統運行的影響
1.1 對汽輪機系統運行的安全因素
高、中壓脹差變化情況
在BT持續過程中,機組中壓脹差正值降低,負值方向增大,主要原因是中壓缸進汽量很小,對于中壓轉子、中壓缸來說均是冷卻狀態,這種情況下,中壓缸缸體龐大,縮回速度較慢,轉子受到的冷卻
影響要遠大于汽缸,從而出現中壓脹差正值降低、負值方向增大現象;在BT工況下,高壓缸不再進汽,高壓轉子高速旋轉產生的熱量不能被排汽帶出,高壓缸排汽溫度升高很快,通常該溫度很快可由320℃升至380 ℃,當高壓缸通風閥開起后,缸內蒸汽密度降低,排汽溫度逐步下降,高壓脹差也逐步降低。
1.2 汽輪機系統壽命的影響
汽輪機轉子的脆化現象是由于雜質元素(特別是P和Sn)的晶界偏析而引起的,當晶界偏析達到極限值時,整個部件可能發生斷裂事故。高、中壓轉子,以蠕變和熱疲勞損傷作為劣化的主要原因,重點要對這些損傷進行評價。
高、中壓缸及高、中壓轉子應力變化情況
在鍋爐BT后,隨著持續時間的增長,高、中壓缸的缸體溫度下降的幅度越大,且下降得速度均較大,遠大于正常停機后的自然冷卻缸體下降速度,這樣對汽缸的金屬壽命影響很大。
機組在鍋爐BT后2 h時,高壓轉子外表面受到的拉應力上至
最高75.8 MPa,幾乎同時中壓轉子外表面受到的拉應力也上至最高115.9 MPa,這樣高拉應力對轉子的破壞性特別嚴重。在此之后,隨著主汽、再熱汽溫度下降速度的變緩,應力變化也逐步降低。
在鍋爐系統缺陷處理后,啟動風煙系統風機恢復機組負荷過程中,汽輪機高壓轉子最大應力達138 Mpa(壓應力)(此時高壓上缸缸體金屬溫度達418 ℃、高壓下缸缸體金屬溫度達443 ℃),中壓轉子最大應力達142 Mpa(壓應力)(此時中壓上缸缸體金屬溫度達450 ℃、中壓下缸缸體金屬溫度達453 ℃),隨著機組負荷逐步穩定后,應力趨于降低并穩定,這樣整體轉子應力變化完成一個循環,每這樣循環一次,對汽輪機轉子壽命都有一定的損耗。
1.3 對發電機系統的影響
機組由高負荷或正常負荷工況下快速降低至2―3MW時,發電機本體發熱量急劇降低,其本體線圈溫度降低,其內部氫氣濕度升高,特殊情況下可能產生結露,快速大量的冷縮使得線棒滑移量增大,頻繁這樣的工況,可能導致線棒磨破漏水,損壞發電機內部設備。
發電機由高負荷降到極低負荷,運行一段時間后,再將負荷升起至正常負荷的過程,就是發電機內部發熱部件熱應力循環的一個過程,負荷率變化越大導致的交變應力量越大,這樣頻繁的變化,會導致發電機內部部分零部件松動或摩擦損壞。
1.4 BT工況下危險因素分析
低負荷工況下運行存在的危險隱患:
(1)汽包水位不易控制,易引起水位波動,主汽、再熱汽處于低溫運行狀態,且此時為了盡量保持主汽、再熱汽壓力下降速度慢,各疏水門均不開起,為此汽輪機存在水沖擊的隱患很大。
(2)主汽溫度、再熱汽溫度下滑較低,過熱度偏低,易產生汽中帶水現象,對汽輪機組有一定威脅,特別是長時間運行后,主汽、再熱汽溫度都已很低,都已遠低于對應汽缸金屬溫度,為此汽溫對每個汽缸金屬都是一種強制的冷卻,有一定的破壞性。
(3)在BT極端低負荷2MW―3MW工況下運行,給水系統中的一臺汽泵必須退出給水系統,此時為了減緩主汽、再熱汽壓力下降速度,高旁、低旁均在關閉位置,由于主汽流量少、給水流量也相應較少,運行汽泵的再循環門必須伴隨著開起,長時間這樣運行,此再循環閥的磨損相當嚴重。
(4)單臺汽泵運行,電泵在運行狀態作為熱備用方式,消耗廠用電量。
(5)高過減溫水門、再熱汽減溫水門必須嚴密,否則影響到主汽、再熱汽的降低,嚴重時可能導致汽中帶水、水沖擊。
(6)這種工況下,只有中壓缸進汽而高壓缸不進汽,要特別注意高壓缸至排汽裝置通風閥開起及高壓缸內部金屬溫度變化情況,防止因缸內鼓風損失大導致金屬溫度高、動靜部分發生摩擦損壞設備。
(7)鍋爐BT后機組從大負荷突降或重新啟動時,對鍋爐本體、汽機本體的運行都是很大的沖擊,鍋爐系統的膨脹節、焊口都是熱脹冷縮、風壓波動可能造成薄弱環節處破裂泄漏。
(8)在鍋爐BT操作及恢復過程中,反復進行切缸、反切缸、廠用電切換等重大操作,引起人員誤操作的概率較大。
2 為了防止設備損壞、延長汽輪發電機組壽命,特制定以下防范措施
循環流化床鍋爐因設備或系統故障原因,可達到短時間的停爐不停機工況、減少發電機與電網解列引起的非停次數,但這些工況對機、電、爐系統及壽命都有不同程度的損傷,為此要盡量避免或減少這些工況的發生。
(1)提高鍋爐系統中設備的健康水平,盡量減少BT的發生。
(2)在鍋爐發生BT進行調整操作過程中,如果10 min內,主汽、再熱汽溫度下降超過50 ℃,必須立即打閘停機,防止汽輪機進水,導致汽輪機大軸彎曲事故的發生。
(3)汽輪機降負荷運行,保證主汽、再熱汽汽溫與相應的汽缸內壁金屬溫度偏差不得高于50 ℃,如果超過該值,必須立即打閘停機,防止汽輪機系統損壞。
(4)按照汽輪機運行說明書要求,過熱汽和再熱蒸汽溫度降低速率不得超過1℃/min,且過熱度最低必須維持在80 ℃以上,汽輪機降負荷采用“中缸控制”運行方式,再熱汽溫度必須高于430 ℃。
(5)在鍋爐系統缺陷消除、各種風機啟動恢復過程中,各擋板開起速度要緩慢,各種風壓變化要適度,防止風壓大起大落導致風煙系統非金屬膨脹節超壓破裂。
(6)在汽輪發電機升負荷過程中,嚴格控制升負荷率,防止加負荷速率過大導致發電機內線棒或其他部件碰摩損壞。
【摘 要】近年來,國家經濟和科技不斷發展,國內外的火力發電機組控制技術也得到了顯著提高。研究表明現階段火力發電組鍋爐控制技術存在著慣性大、不確定性等因素,使得傳統的控制方法不能夠完整的對建立的數學模型進行精確的控制和解析。本文從非線性角度介紹了一些不依賴于鍋爐模型的新的控制技術,能夠很好的控制鍋爐,有利于從整體上提高鍋爐機組的性能,具有很大的研究意義。
【關鍵詞】火力發電 鍋爐 控制技術
隨著信息技術的不斷提高,在火力發電系統中引入了計算機技術,從而為火力系統的控制提供了更加復雜的控制策略。隨著發電機組的數學模型趨于精確化,由于鍋爐系統零部件具有非線性、不確定性、慣性大等問題,使得傳統的控制技術難以實現對其進行精確的控制。自20世界90年代以來,各國廣泛的開發新技術,研究新的控制方法。特別是模糊控制、自適應控制、神經控制、預測控制等技術的研究最為廣泛,逐漸成為了各國研究火力發電機組鍋爐控制技術的熱點。
1傳統控制技術的局限性
現階段火力發電機組的鍋爐控制技術是由PI算法的多個單輸入和單輸出的反饋回路構成,在預定的負荷工作點整定控制器的參數并將其固定。由于現在的電網負荷需求的波峰和波谷差很大,難以避免的使用容量較大的機組參與調峰。為了能夠高效的參與負荷的調度,火力火電機組的控制必須在調度周期內適應負荷變動和隨機波動。隨著工作點的不斷變化,在負荷調度中,傳統的控制技術中的零件的非線性降低了發電機組的運行性能。鍋爐機組是一個復雜的非線性系統,各個通道之間都存在著耦合和慣性滯后,這些原因導致了控制困難。另外,發電機組正在朝著大容量、高參數等方向發展,鍋爐運行的安全性對火力發電機組的過熱蒸汽溫度、再熱蒸汽溫度的控制性能提出了更高的要求。因此,傳統的火力發電機組鍋爐控制技術不能夠滿足鍋爐的運行安全性指標,也不能夠解決零件非線性等不利因素造成的影響,為此人們研究了各種各樣的新的控制策略來解決控制中出現的問題[1]。
2研究新技術的意義
火力發電機組傳統的控制方法具有單一性,輸入和輸出都不能滿足當前鍋爐控制的新要求,通過研究新技術能夠更好的服務于鍋爐控制行業,此外由于控制技術是一種綜合性技術,研發出新的鍋爐技術,能夠帶動其它相關行業的發展,從而從根本上能夠促進社會經濟的發展,提高社會生產力水平。
3 鍋爐的新技術
3.1 自適應性控制
自適應性顧名思義是指實時跟蹤系統的運行狀態并且不斷的變更各個控制器的參數,能夠解決動態特性變化的過程控制問題。當機組在電網負荷在大范圍變動條件下運行時,自適應性為多輸入和多輸出的非線性火力發電機組。這樣能夠為發電機組提供高效的控制策略。
通過自適應性控制解決煤炭的性質、管束老化等問題對鍋爐蒸汽溫度動態特性的影響問題,運行結果表明自適應性控制比傳統的單輸入 、單輸出控制要有明顯的高效性。另外,美國弗吉尼亞工學院的研究人員設計的自適應性控制器,能夠控制鍋爐的汽包水位,研究仿真結果表明,控制性能明顯的高于傳統的PI單輸入和單輸出控制。通過這些研究實例也可以得出自適應性控制能夠較好的解決非線性問題,效果比傳統的控制技術優越[2]。
3.2神經控制
神經控制是通過建立神經網絡進行控制的技術。由于神經網絡具有非線性映射能力和函數逼近能力,因此這種控制能夠對鍋爐中的非線性建模和控制提供良好的控制工具。希臘國立工業大學等人提出的汽包鍋爐控制方案,能夠通過誤差反向傳播算法對鍋爐動態特性進行逆向研究,建立逆向的神經動態控制器,,通過對汽包鍋爐壓力控制進行仿真表明,這種控制器的響應時間要明顯比傳統的控制技術短。德國工業大學的相關研究人員采用將復雜系統分解的方法,采用多智能體系統來控制鍋爐的燃燒過程。研究實例表明,通過利用神經網絡的自組織和自學習的能力,能夠發現機組運行數據中的動態信息,補償對象的非線性,克服不確定性的影響,能夠將系統進行線性耦合[3]。
3.3 預測控制
在熱工程控制中,普遍存在著系統的慣性較大,滯后性較大,以及非線性等因素導致難以建立精確的數學模型,這樣傳統的控制技術難以解決非精確模型的控制,導致控制出現偏差。而預測控制對模型的精度沒有很高的要求,魯棒特性較好,能夠很好的解決這些問題,因此預測控制在熱工程技術中有著廣泛的應用。通過預測控制技術能夠實現對200MW汽包鍋爐過熱蒸汽壓力的自調整控制,研究的仿真結果表明:在大范圍運行條件下,預測控制能夠明顯的提高控制性能。英國的貝爾法斯特大學的研究人員基于廣義的預測控制設計變量大的預測控制器,對運行范圍內負荷速率變動較大時主蒸汽壓力和溫度進行仿真,結果表明:此類控制器的性能明顯優于傳統單輸入和單輸出控制器性能。
3.4 模糊控制
所謂模糊控制是指將工作人員的操作經驗和操作過程應用語言變量總結為若干條件語句,建立模糊關系,并且建立模糊的邏輯推理,從而能夠實現對復雜控制對象的控制。應用模糊控制技術來控制電站鍋爐,不僅在仿真研究上取得了一定成果,在工程實踐中也取得了長足的進展。相關的仿真研究有美國俄亥俄大學的研究人員設計應用在流水量控制的模糊控制器。澳大利亞新南威爾士大學的科學家,通過對不同負荷運行條件設計的局部線性控制規律進行線性組合,構造控制系統實現全局控制,實現對汽包水位的調節[4]。
4結語
隨著改革開放的不斷深入,我國的火力發電機組鍋爐控制技術也得到了顯著提高,使得我國鍋爐行業的應用從整體上得到了應用。但鍋爐零件也不免存在著一些滯后性大、非線性、慣性大、不確定性等不利因素,導致傳統的控制技術難以實現精確模型的良好控制。本文介紹了一些不依賴于鍋爐模型的新的控制技術:自適應控制、神經控制、預測控制、模糊控制,使得鍋爐控制朝向智能化方向發展。通過對鍋爐控制技術的非線性研究,能夠為提高火力發電機組鍋爐控制系統的穩定性、安全性、高效性提供一種新的研究思路。
作者簡介:江清凌(1995.2-),女,華北水利水電大學,本科,研究方向熱能與動力工程。
循環流化床(cfb)鍋爐發電機組廠用電率高達12%左右,明顯地抵消了cfb鍋爐燃燒效率高、排放污染低、煤種適應性強等優勢。隨著我國cfb鍋爐大型化的快速發展,廠用電率高的問題越來越突出;如果不盡快解決這一問題,則成為制約cfb鍋爐大型化發展的瓶頸。在設計上積極采用變頻調速技術(高壓變頻裝置及低壓變頻裝置)、斬波內反饋調速電機技術,業主積極調研變頻等調速技術在電廠應用中遇到的問題及解決辦法,在設計階段抓好這些節能工作可使cfb鍋爐發電機組的廠用電率降到接近同類型煤粉爐發電機組的程度。按135mw機組計每年因此可節約電量近3000萬度,價值近千萬元公務員之家版權所有
1變頻調速技術在應用中的節能分析
1.1變頻調速技術的發展狀況
在電力生產中,泵與風機類轉動設備應用較多,其電能消耗和諸如閥門、擋板相關設備的節流損失以及維護、維修費用占到生產成本的7%~25%。隨著電力體制改革的不斷深入,競價上網的不斷推廣,節能降耗業已成為降低生產成本、提高產品質量和電廠競爭力的重要手段之一。變頻調速技術順應了工業生產自動化發展的要求,開創了一個節能降耗新時代。變頻調速技術的基本原理是根據電機轉速與工作電源輸入頻率成正比的關系,通過改變電動機工作電源頻率達到改變電機轉速的目的。變頻器就是基于上述原理采用交-直-交電源變換技術,電力電子、微電腦控制等技術于一身的綜合性電氣產品。變頻調速技術的應用一改普通電動機只能以定速方式運行的陳舊模式,使得電動機及其拖動負載在無須任何改動的情況下即可以按照生產工藝要求調整轉速輸出,從而降低電機功耗達到系統高效運行的目的。目前,變頻調速技術已經成為現代電力傳動技術的一個主要發展方向。選用變頻系統的同時可通過與dcs的智能接口,實現設備系統的自動控制。
1.2變頻調速技術節能分析
通常在電力生產中最常用的控制手段則是調節閥門、風門、擋板開度的大小來調整泵與風機類轉動設備。這樣,不論生產的需求大小,風機都要按額定轉速運轉,而運行工況的變化則使得能量以閥門、風門、擋板的節流損失消耗掉了。在生產過程中,不僅控制精度受到限制,而且還造成大量的能源浪費和設備損耗。從而導致生產成本增加,設備使用壽命縮短,設備維護、維修費用高居不下。風機、泵類設備多數采用異步電動機直接驅動的方式運行,存在啟動電流大、機械沖擊、電氣保護特性差等缺點。不僅影響設備使用壽命,而且當負載出現機械故障時不能瞬間動作保護設備,時常出現泵損壞同時電機也被燒毀的現象。近年來,出于節能的迫切需要和對產品質量不斷提高的要求,加之采用變頻調速器(簡稱變頻器)易操作、免維護、控制精度高,并可以實現高功能化等特點;因而采用變頻器驅動的方案開始逐步取代風門、擋板、閥門、液偶的控制方案。通過流體力學的基本定律可知:風機、泵類設備均屬平方轉矩負載,其轉速n與流量q,壓力h以及軸功率p具有如下關系:q∝n,h∝n2,p∝n3;即,流量與轉速成正比,壓力與轉速的平方成正比,軸功率與轉速的立方成正比。采用變頻調速技術改變電機轉速的方法,要比采用閥門、擋板調節更為節能經濟,設備運行工況也將得到明顯改善。
1.3與滑差調速相比
滑差調速的控制方式比較典型可靠,但其存在著調速精度差、范圍窄、線性不好、能耗高等缺點,而變頻調速系統的特點正好克服了傳統滑差調速系統的不足,具有效率高、無轉差損耗、調速范圍寬、特性硬、精度高、起制動方便靈活、能耗小的特點,既具有交流感應電機的長處,又具有直流電機的調速性能,有非常顯著的可靠節能效果。與傳統的滑差電機相比變頻調速系統更有維護量小、啟動電流小、系統功能較為完善、給操作人員提供了便利等優勢。
2廣泛應用高、低壓變頻技術
生活水泵、消防水泵、除鹽水泵等采用380v電機的設備可應用低壓變頻技術進行變頻調速。采用6kv電機的泵與風機可應用高壓變頻技術,可取得明顯效果。
以大型440t/h級cfb鍋爐發電機組為例:可設計安裝多套高壓變頻裝置(如一次風機6kv、1400kw,引風機6kv、1250kw,二次風機6kv、710kw,播煤增壓風機6kv、250kw,凝結水泵6kv、280kw,給水泵6kv、3400kw,循環水泵6kv、800kw)??稍O計安裝多套低壓變頻裝置(4-6套計量皮帶給料機,5套羅茨風機,1套石灰石加料機,2套冷渣機,2套點火增壓風機,生活水泵、消防水泵、除鹽水泵等水泵,2套點火增壓風機)。當采用以上措施在發電機組正式投產后,廠用電率可下降到9%以下,可與同類煤粉爐的廠用電率相當,這樣就有效地克服了cpb鍋爐廠用電率高的缺陷。
實踐證明,變頻器用于風機、泵類設備驅動控制場合取得了顯著的節電效果,是一種理想的調速控制方式。既提高了設備效率,又滿足了生產工藝要求,并且因此而大大減少了設備維護、維修費用,還降低了停產周期。直接和間接經濟效益十分明顯。
3積極應用斬波內反饋調速電機技術
近幾年內反饋交流調速電機技術和控制系統得到快速發展,產品有大、中容量6kv、10kv電壓等級。斬波內反饋調速系統利用現代電子技術,控制電動機轉子(繞線式)感應電流,從而控制轉子輸出轉矩,達到調速目的。與變頻調速相比,內反饋調速系統接于電機轉子回路,工作電壓低,運行穩定可靠,且在低速下仍能保持較高的功率因數,效率較高;與傳統調速方法相比,內反饋調速系統在調速時不用改變電機接線即可實現平穩調速,不需額外增加開關,改善開關運行工況,對高壓電機具有重要意義;內反饋調速系統利用逆變回路將轉子剩余能量反饋回電源系統,不消耗電能,效率特高。斬波內反饋調速電機系統改變傳統風機、泵類啟動及流量調節模式,根據負荷情況降低流量的同時能夠降低電機輸出功率達到節能目的,并能實現電機的軟啟動。該系統能夠實現無級調速,取代風門、擋板、閥門流量控制。通過傳感器將有關物理量送入微機監控系統還可實現自動調速,并具有故障記憶知檢功能,能夠大大提高生產自動化管理水平。
通過對采用此種技術的電廠考察發現,斬波內反饋調速電機具有較好的節能效果,采用斬波內反饋調速電機在調速工況下可節電40%以上,實際使用證明可明顯減低諸多風機、水泵的廠用耗電量,年節電顯著。早期設備元器件質量有待提高,曾因元器件燒壞導致系統停運,但調速系統停運不影響電機正常運行。近期設備此類事故明顯減少,且該產品售后服務較好,事故發生后一天內一般都能到達現場無償維修??偟目磥韮确答伣涣髡{速電機技術和控制系統具有一定的先進性,有很大的采用價值和顯著的經濟效益。
4在系統設計方面降低廠用電耗公務員之家版權所有
在設計初期應仔細考慮降低廠用電耗方面的工作,cfb鍋爐發電機組的廠用電水平就可接近煤粉鍋爐發電機組。在電廠設計初期設計單位應與鍋爐廠、輔機制造廠以及兄弟設計院進行廣泛交流,討論諸如輔機容量選擇、系統配置、阻力計算等若干方面的問題,為廠用電的降低打好良好的技術基礎。
在風機選型方面進行優化。先由鍋爐廠提出一個較準確的阻力計算值(不含任何裕量),最后進行整個煙風系統阻力計算后,統一按《大火規》考慮其裕量,可避免重復計算裕量后帶來的風機、偶合器及電機等不在高效區運行的狀況發生,可有效降低電耗。同時應注意《大火規》中循環流化床部分風機的流量及壓頭裕量規定的遠比常規煤粉爐送、引風機規定的裕量大的多,應進行廣泛調查合理選擇,以便使風機在高效區運行。
采用新型可靠的出渣方式。將鍋爐廠習慣配套的風水聯合流化床冷渣器改為滾筒式冷渣器或鋼帶式冷渣器,渣系統電耗可從330-400kw降至100-200kw,廠用電降低(節能效果)顯著。
根據來煤細度決定是否需要粗級破碎,最好設計一級篩分系統,既保證了鍋爐的粒度要求,又有效地防止了過破碎,還在一定程度上降低了廠用電。
在電廠總體布置上采取措施,降低能耗。⑴在爐側就近布置渣庫,在兩爐之間布置石灰石粉庫,縮短輸送距離,降低電耗;⑵一、二次風機靠近空氣預熱器布置,降低了風道阻力從而降低電耗;⑶灰庫布置在廠區內且距電除塵較近,大大降低氣力除灰系統的電耗。
鍋爐制造廠的鍋爐本體設計對廠用電的影響較大。在設備招議標時應對比風量、風速等各種參數的差異并考慮對廠用電的影響。
5結論
循環流化床(cfb)鍋爐發電機組廠用電率高達10-12%,明顯地抵消了cfb鍋爐的諸多優勢。廠用電率高的問題已成為制約cfb鍋爐大型化快速發展的瓶頸。如在設計上廣泛采用變頻、斬波內反饋調速電機等高低壓調速節能技術,同時在鍋爐本體設計、系統配置、輔機選型等方面采取有效措施后,可使cfb鍋爐發電機組的廠用電率降到接近同類型煤粉爐發電機組的程度,與采用濕法煙氣脫硫裝置的同類型煤粉爐發電機組的廠用電水平相當。