緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇高分子材料的研究進展范文,希望它們能為您的寫作提供參考和啟發。
阻燃劑主要是用來提高材料的抗燃性,從而避免材料被引燃并且要抑制火焰的傳播。阻燃劑成為高分子材料發展的重要動力之一,使用量僅次于增塑劑。阻燃劑根據不同類型的化合物分成有機阻燃劑、無機阻燃劑以及有機-無機混合阻燃劑這幾種類型。其中無機阻燃劑應用最為廣泛,需求量占到阻燃劑總量的50%以上。理想阻燃劑需要有著阻燃效果好以及添加量少的優點,同時要無煙無毒從而避免環境污染,并且對其他材料的性能影響小,有著良好的加工性能好,熱穩定性高并且價格便宜等特帶你。阻燃劑的這些要求,決定著阻燃劑以及阻燃技術的發展放心。有機阻燃劑有著添加量少以及基材相容性好的優點,同時對阻燃制品性能的影響也更小,不過現有的有機阻燃劑在燃燒時發煙量大同時揮發性大,熱穩定性以及水解穩定性都比較差。目前研究的有機阻燃劑有氮系阻燃劑、鹵系阻燃劑、有機磷阻燃劑以及硅系阻燃劑等。
2有機硅阻燃劑的合成
有機硅高分子材料近年來開發出來的新型高效環保的無鹵阻燃劑,作為成炭型的抑煙劑,能夠賦予高聚物在阻燃以及抑煙的過程中,還可以改善材料的機械強度以及加工性能。作用機理主要是硅氧烷燃燒過程中能夠生成硅,進而碳阻隔層能夠隔絕樹脂與氧氣的接觸,避免熔體滴落,因此實現阻燃效果。有機硅阻燃劑有著熱穩定性良好的特點,這是由分子主鏈的-Si-O-鍵所決定。有機硅閃點絕大多數都高于300℃,所有具有難燃性。較為常見的有硅油、硅樹脂、硅橡膠以及聚硅氧烷等。目前市場應用的有機硅阻燃劑打斗是美國通用電器提供的SFR-100,是一種黏稠透明的硅酮聚合物,能夠與各種協同劑例如多磷酸胺等并用,已經使用在聚烯烴阻燃,低用量可以滿足阻燃要求,高用量能夠賦予基材有意的抑煙性以及阻燃性。研究人員通過研究有機硅高分子材料的阻燃性,發現在PU彈性體當中加入粉末狀環氧以及硅氧烷,只需要加入5%,就能夠使HRR降低到80%,液態的硅氧烷則能夠降低HRR到50%。通過分析阻燃PP,還能夠發現有機硅的復合物對PP有著明顯的阻燃以及減少熔滴效果。
3有機硅阻燃劑的國內外研究進展
1)國外研究進展。1981年坎貝爾等人發表關于聚碳酸酯與聚二甲基硅氧烷(PDMS)的共混,能夠提高PC阻燃性的報告。不過PSMS自身阻燃效果不夠理想,為了改善阻燃性能,需要在其結構當中加入反應性官能團,例如端羥基、氨基以及環氧基等,如下圖所示。
1983年,GE公司采用1-40wt%的硅膠或者線性硅油,1-20wt%的有機化合物例如硬脂酸鎂和1-20wt%的有機硅樹脂制備熱塑性塑料使用的有機硅阻燃劑,能夠廣泛應用于熱塑性塑料。1985年,GE公司繼續開發用于尼龍樹脂的有機硅阻燃劑,通過添加10-50wt%,能夠達到理想的阻燃效果。1990年,GE公司通過二羥基苯酚與羥基芳香酯硅氧烷進行光氣化反應制備出有機硅-聚碳酸酯共聚物,用來做阻燃絕緣層,同時與2003年研制聚碳酸酯硅氧烷阻燃材料,在加工流動性以及阻燃性方面性能良好。日本的三菱瓦斯化學公司在羥苯基烷基封端的聚二甲基硅氧烷合成有機硅阻燃劑領域進行了大量研究工作,并合成含有聚硅氧烷鏈段的一系列阻燃劑,有著良好的耐熱性、阻燃性、透明性以及低溫沖擊強度。日本NEC公司研發商品化的硅酮系阻燃劑“XC-99-B56-54,是一種帶有芳香基同時含有支鏈結構的聚硅氧烷,突出特點是對分子結構當中的苯基含量以及功能端基反應性科學設計,從而達到最理想的水平。比聚甲基硅氧烷有著更好的分散性,對PC/ABS、PC合金具較高的阻燃性。
2)國內研究進展。我國科研機構也在有機硅高分子材料的阻燃性方面進行了大量工作。歐育湘等人對有機硅阻燃劑SFR-100性能和PE應用的效果展開了詳細的研究,SFR-100是非鹵成炭型的阻燃劑,一方面賦予聚烯烴良好的阻燃抑煙性,另一方面也改善材料加工性能,同時提高材料機械強度。華東理工大學的劉述梅以及王瑜潤等合成苯基含量高的硅樹脂阻燃劑,實驗表明如果硅樹脂中的苯基含量在80%~90%之間時,阻燃效果最優并且對機械性能的影響也最低。哈工大的黃玉東以及孫舉濤等人用苯基氯硅烷以及甲基為單體合成耐高溫的有機硅樹脂,不過在空氣氣氛之下,因為有機基團出現氧化分解而導致硅樹脂阻燃性有一定程度的下降。浙江大學的楊輝以及周文君等人通過水解縮合法制備有機硅樹脂阻燃劑,在800℃以及N2氣氛之下,熱失重控制在38%之下,熱穩定性優異,通過往PC添加5%(質量分數)之后,氧指數從25%進一步提高到35%。
4結語
總而言之,有機硅高分子材料有著性能優異以及環保的優點,符合目前阻燃劑發展的趨勢,一方面能夠提高阻燃效果,同時還能夠改善材料的加工性能以及機械性能。有機硅高分子材料阻燃劑的各方面發展處于起步階段,簡化其合成工藝從而降低成本是有機硅阻燃劑繼續發展的關鍵內容。
【參考文獻】
[1]歐育湘,陳宇,王筱梅.阻燃高分子材料[M].北京:國防工業出版,2011.
[2]阻燃劑應用研究綜述叨.化工中間體[J].2007.
[3]呂丹.聚合物的阻燃及阻燃劑的研究進展[J].廣東化工,2009.
中圖分類號:TG422文獻標識碼:A文章編號:1009-914X(2018)20-0195-01
隨著社會生活的不斷進步和科技水平的提高,我國對高分子材料的研究越來越深入,高分子材料的使用范圍也越來越廣。高分子材料的大范圍推廣,一方面給人們的日常生活提供了更加方便快捷的使用材料,另一方面也帶來了嚴重的環境污染。研究生物可降解高分子材料,將生物可降解高分子材料應用到當前的社會生活中,是構建環境友好型、資源節約型社會的基本要求,也是貫徹落實科學發展觀與可持續發展觀的要求,要不斷探索更加科學的方法,增強對生物可降解高分子材料的研究,推動生物可降解高分子材料的發展。
一、生物可降解高分子材料的基本特點
生物可降解高分子材料比較傳統的高分子材料而言,其合成和降解的過程對環境造成的污染比較小。首先,生物可降解高分子材料的降解時間要明顯短于普通塑料的降解時間,可以有效降低對環境的污染。其次,生物可降解高分子材料在降解過程中不會出現有毒氣體,也不會釋放重金屬污染物[1]。再次,生物可降解高分子材料在焚燒的過程中不會產生對人體有害的化學物質。最后,生物可降解高分子材料的處理回收方式比較簡單,可以與普通生活垃圾一起進行填埋,也可以二次加工成肥料等進行循環利用。
二、生物可降解高分子材料的降解機理
與傳統高分子材料相比,生物可降解高分子材料的降解受自然環境和自然條件的影響比較大,降解過程比較簡單,并且降解之后產生的物質對自然環境的傷害比較小。
(一)物理作用
高分子材料可以通過一定的物理反應進行降解,在特定的條件下,光、溫度、輻射等外界條件都會對生物可降解高分子材料產生影響,使其表面特征或者機械性能發生變化。比如光敏性聚合物的降解,主要就是利用光的作用,通過對紫外線的吸收,使聚合物的分子具有一定的活性,在一定的物理作用下,使聚合物被降解[2]。
(二)化學作用
生物可降解高分子材料在降解過程中會受周圍環境變化的影響,環境中水分、濕度的變化會對生物可降解高分子材料產生化學作用,使材料分子之間的分子鏈斷裂,斷裂的分子在環境的影響下重新組合,影響高分子材料的降解。
三、生物可降解高分子材料的應用
(一)生物可降解高分子材料在農業上的應用
我國是傳統的農業大國,每年用于農業生產的農用地膜、農產品保鮮膜以及化肥包裝袋等數量都非常大,這些都會對環境造成一定的污染。就比如傳統的地膜,其回收比較困難,并且在自然環境中很難被降解,不僅污染環境,長期惡性循環,還會降低土壤的透氣性。將生物可降解高分子材料應用到農業生產中,可以有效的緩解對環境的污染[3]。生物可降解高分子材料中含有甲殼素或者殼聚糖,這些物質在自然環境下很容易被降解,并且降解之后產生的物質不但不會污染環境,還能為農作物的生產提供養分,同時,能改善土壤質地,使土壤更適合農作物的生長。利用生物可降解高分子材料生產的地膜可以在土壤中自行降解,轉化成有利于農作物生長的營養物質,減少對環境的污染和破壞。
(二)生物可降解高分子材料在包裝材料上的應用
將生物可降解高分子材料應用到包裝材料中,可以有效減少包裝廢品對環境造成的污染。將纖維素和其衍生物進行加工,按照不同產品的包裝需求采用不同的加工工藝,可以生產制造出適合食品、洗漱用品或者其他日用品的外包裝。首先纖維素的提取工藝比較簡單,生產成本比較低。其次纖維素可以在自然環境下被有效降解,可以降低包裝廢品對環境的污染。傳統的包裝材料多以不容易被降解的塑料為主,制作工藝比較復雜,制作成本較高,并且廢棄的包裝對環境造成的污染比較嚴重。生物可降解高分子材料能夠替代傳統的包裝材料,減少廢棄包裝對自然環境的危害。
三、結論
研究生物可降解高分子材料,是建設環境友好型和資源節約型社會的要求,也是貫徹落實科學發展觀、實現長久可持續發展的重要途徑,將生物可降解高分子材料廣泛應用在農業和包裝材料上,能夠有效減少傳統塑料對自然環境的污染,有利于生態環境的恢復。因此,研究和發展生物可降解高分子材料,是當前構建社會主義和諧社會、保護自然生態環境的必行之路。
參考文獻
[1] 曾少華,申明霞,段鵬鵬,韓永芹,王珠銀.可生物降解高分子材料的研究與進展[J].粘接,2015,36(01):72-76.
關鍵詞: 功能高分子材料;展望;形狀記憶
Key words: functional polymer materials;outlook;shape memory polyer
中圖分類號:TB324 文獻標識碼:A 文章編號:1006-4311(2012)31-0303-02
0 引言
隨著社會的進步和科學技術的發展,一般的材料難以滿足日益復雜的環境,因此需要具有自修復功能的智能材料——形狀記憶材料。20世紀50年代以來,各國相繼研究出在外加刺激的條件(如光、電、熱、化學、機械等)經過形變可以回復到原始形狀的具有形狀記憶功能的材料,它可分為三大類,形狀記憶合金、形狀記憶陶瓷和形狀記憶聚合物材料。高分子產業的迅速發展,推動了功能高分子材料得到了蓬勃發展。形狀記憶聚合物材料的獨特性,廣泛應用于很多領域并發展潛力巨大,人們開始廣泛關注[1]。
1 功能高分子材料研究概況
功能高分子材料是20世紀60年代的新興學科,是滲透到電子、生物、能源等領域后開發涌現出的新材料。由于它的內容豐富、品種繁多、發展迅速,成為新技術革命不可或缺的關鍵材料,對社會的生活將產生巨大影響。
1.1 功能高分子材料的介紹 功能高分子材料是指具有傳遞、轉換或貯存物質、能量和信息作用的高分子及其復合材料,或具體地指在原有力學性能的基礎上,還具有化學反應活性、光敏性、導電性、催化性、生物相容性、藥理性、選擇分離性、能量轉換性、磁性等功能的高分子及其復合材料,通常也可簡稱為功能高分子,也可稱為精細高分子或特種高分子[2]。
1.2 功能高分子材料分類 可分為兩類:第一類:以原高分子材料為基礎上進行改性或其他方法,使其成為具有人們所需要的且各項性能更好的高分子材料;第二類:是具有新型特殊功能的高分子材料[3]。
1.3 形狀記憶功能高分子材料 自19世紀80年現熱致形狀記憶高分子材料[4],人們開始廣泛關注作為功能材料的一個分支——形狀記憶功能高分子材料。和其它功能材料相比的特點:首先,原料充足,形變量大,質量輕,易包裝和運輸,價格便宜,僅是金屬形狀記憶合金的1%;第二,制作工藝方簡便;形狀記憶回復溫度范圍寬,而且容易加工,易制成結構復雜的異型品,能耗低;第三,耐候性,介電性能和保溫效果良好。
形狀記憶聚合物(SMP)代表一項技術上的重要的類別刺激響應的材料,在于形狀變動的反應。更確切地說,傳統意義上的SMP是聚合物變形,隨后能固定在一個臨時的形狀,這將保持穩定,除非它暴露在一個適當的外部刺激激活了聚合物恢復到它原來的(或永久的形狀)。因此,相關的反應被稱為聚合物內的形狀記憶效應(SME)。雖然各種形式的外部刺激可以被用來作為恢復觸發,最典型的一種是直接加熱,通向溫度增加[4]。
2 部分形狀記憶高分子材料的制備方法
2.1 接枝聚乙烯共聚物 在形狀記憶聚乙烯中,交聯(輻射或化學)是必須的,但是交聯程度過高會導致聚合物的加工性能不好,因此最好是將交聯放在產品制造的最后一步:Feng Kui Li等采用尼龍接枝HDPE獲得了形狀記憶聚合物。他們采用馬來酸酐和DC處理熔融HDPE在180℃反應5分鐘,然后在230℃下和尼龍-6反應5分鐘得到產物。SEM照片顯示尼龍微粒小于0.3μm,在HDPE中分散良好,兩者界面模糊,顯示兩者形成化學粘合;而尼龍和HDPE簡單混合的SEM照片中兩者界面明顯試驗同時表明,隨著DCP含量和尼龍含量的提高,共聚物中形成了更多的共聚物具有和射線交聯聚乙烯(XPE)SMP相似的形狀記憶效應,形變大于95%,恢復速度好于射線交聯的聚乙烯SMP,該聚合物在120℃左右形狀恢復達到最大。對其機理研究表明,接枝在PE上的尼龍形成的物理交聯對形狀記憶效應有重要作用。值得注意的是該共混物是僅僅通過熔融混合得到的,工藝非常簡單,而且采用的是通用聚合物,因此該方法值得推廣[5]。
2.2 聚氨酯及其共混物 聚氨酯是含有部分結晶相的線性聚合物,該聚合物可以是熱塑性的,也可是熱固性的。聚氨酯類形狀記憶材料,軟段的結構組成和相對分子質量是影響其臨界記憶溫度的主要因素,硬段結構對記憶溫度影響不大。
采用聚氨酯和其它聚合物共混,可以改善性能,得到所需要的產物。有報道采用聚己內酰胺(PCL)、熱塑性聚氨酯(TPU)和苯氧基樹脂制得的形狀記憶材料。發現該產物隨著組成的變化而玻璃化轉化溫度不同;同時發現PCL部分在混合物中結晶相消失,說明結晶過程被阻礙。改混合物具有形狀記憶效應的原因在PCL/苯氧樹脂作為了可逆相。該混合物的玻璃化溫度可以通過TPU/苯氧基樹脂的混合比例和種類決定,增加混合物中固定相和減少TPU鏈長度可以減少滯后效應。報道采用PVC和PU共混也能得到SMP。該混合物中存在PVC/PCL形成的無定形相,混合物的玻璃化的溫度也隨著PVC/PCL的組成變化而平穩的發生變化,固定相記憶著最初形狀[6-8]。
3 國內外形狀記憶高分子材料研究現狀
3.1 國內研究現狀 國內研究的形狀記憶高分子材料多以聚氨酯和環氧樹脂基為主,加入添加劑或固化劑進行改性,可以得到滿足基本要求的SMPs,但是由于其自身缺點的約束,所以限制了其使用范圍。最近幾年來,形狀記憶合金以利用聚合物為基體添加其他成分,突出各個優點進行對比,得到一些性能良好的形狀記憶材料因此我們列舉國內最新的SMPs研究。
魏堃等人將新型聚合物固化劑與環氧樹脂(EP)進行機械共混,進行適度交聯固化后,制出具有較低玻璃化轉變溫度(Tg)的無定型EP體系,得出結果顯示適度交聯固化的EP體系具有良好的形狀記憶特性。
高淑春等人利用活化濺射方法制備TiO2薄膜,以Ni-Ti形狀記憶合金生物材料為基體,附著在形狀記憶和金材料的表面,其跟血液相容性比較好,因此具有較高的臨床使用價值。
3.2 國外研究現狀 對比國內,國外的SMPs發展比較早,例如:美國、日本、德國等由于具有先進的設備和理論基礎,因此在各個方面相對國內都比較成熟,所以本人參考最近國外SMPs相關研究在此論述。
Y.C.Lu等人利用環氧基的形狀記憶材料設計模擬服務環境所能反映出的預期性能要求即
①暴露在紫外線輻射下循環為125分鐘;②在室溫下沉浸油內;③浸泡在熱水中49℃。一種新穎的高溫壓痕法評估適應條件的SMPs的形狀和力學性能。結果表明對于有條件的比較一般環境條件SMPs的玻璃化轉變溫度降低與較高模和敏感應變速率。如果溫度設定低環境條件影響的SMPs形狀恢復能力。特別是紫外線暴露和浸入水中的SMPs回復率明顯低與無條件的材料。當回復溫度高于Tg,材料的回復能力相對保持不變。
R.Biju等人用雙酚A(BADC)與縮水甘油醚或者雙酚A(DGEBA)與苯酚螯合物(PTOH)通過一系列聚反應合成熱固性聚合物表現出具有形狀記憶性能。利用差示掃描量熱分析、紅外光譜及流變儀來表征其固化特征。以不同比例DGEBA/PTOH/BADC混合,研究了它們的彎曲、動態力學性能以及熱性能;對于一個給定的成分,彎曲強度和熱穩定性隨著氰酸酯濃度增加而增加,而這些特性隨著PTOH濃度的增加而降低,儲存模量表現出相似的趨勢。這個轉變溫度(Tt)隨著整體氰酸酯含量的增加而增加。這些聚合物在形狀記憶性能顯示出良好的恢復形狀,并且形狀恢復時間減少。而顯示恢復時間與形狀恢復模量增加(Eg/Er)剛好相反。這個轉變溫度可調諧反應物組成及變形恢復速度隨驅動的溫度增加而增加。這些環氧基氰酸鹽系統具有良好的熱、力學和形狀記憶特征很有希望用在智能電氣領域。
4 展望
由于SMP有著豐富的后備資源,而且形狀記憶的方式靈活,具有廣闊應用和發展前景。因此本文認為,有很多重要因素影響將SMPs技術成功轉化成生產應用,例如:標準化的不同方法描述為量化形狀記憶材料的性能。應該進一步完善形狀記憶原理,在分子結構理論和彈性形變理論基礎之上,建立形狀記憶的數學理論模型,為開發新材料奠定了理論基礎;運用分子結構理論、實驗設計原理和改性技術知識,提高形狀記憶各項性能、豐富品種、滿足不同的應用需要,增強應用和開發研究,拓寬應用領域,盡快轉化為生產力。
形狀記憶高分子與形狀記憶合金相比具有感應溫度低,且形狀記憶高分子因其獨特的優點而具有廣泛的應用前景,但是我們也應該看到在開發應用上仍存有一些不足[22]:形變回復力小;只有單程形狀記憶功能,沒有雙程性記憶和全程記憶等性能;優化制作設計與工藝,開發更多優秀的品種,在研究聚合物基的SMP中有許多重要工作需要我們一步步努力去做,在完善SMP過程中,同時要研究復合社會不同需求的產品。
參考文獻:
[1]陳義鏞.功能高分子[M].上海:上海科學技術出版社,1998:1-5.
[2]江波等.功能高分子材料的發展現狀與展望[J].石油化工動態,1998,6(2):23-27.
[3]古川淳二.對21世紀功能高分子的期待[J].聚合物文摘,1994,(6):17.
[4]Tao xie. Recent advances in polymer shape memory[J].Polymer, 2011,(52):4985-5000.
[5]Han Mo Jeong Europen polymer ourn [M].2001,(37):2245~2252.
中圖分類號:R197 文獻標識碼:A 文章編號:1009-2374(2013)11-0002-02
1 醫用高分子的發展簡史
在各種材料中,高分子材料的分子結構、化學組成和理化性質與生物體組織最為接近,因此成為各種醫療器械材料的最佳選擇。醫學領域的飛速發展,使功能型高分子材料在醫學界應用提供了可能。當人體組織和器官受到嚴重外傷時,進行組織和器官修復最常用的方法是器官移植。在少數情況下,人體自身的組織和器官可以滿足需求。然而對于某些特殊的組織器官,為了滿足醫學治療的需求,人們自然設想利用其他材料修復或替代受損器官或組織。進入20世紀,功能型高分子材料的研究因醫學領域的發展而提上日程,合成高分子材料的出現為新型醫用材料的選擇提供了更多的選擇。
1936年有機玻璃用于假牙齒制作;1943年賽璐珞模擬人工腎用于血液透析;1950年出現可以制作人工肋骨的有機玻璃類材料;20世紀50年代廣泛應用有機硅聚合物;1951~1954年開始制作人工血管、食道、心臟瓣膜、心肺;1958年出現跨越性的變化,開始了人工腎的制作。
已經使用的醫用高分子材料有上百種,由此而制造的各種不同性能的材料則有上千種,但這些材料都是簡單的使用或適當改性。隨著科學的發展,新型功能高分子材料不斷推出。在相當長一段時間內,生物相容性材料、組織工程與再生學材料、納米生物材料、生物礦化材料和仿生材料,都是醫用高分子材料研究中的熱點和難點。
2 醫用高分子材料的特殊要求
醫用高分子材料的選擇應用的要求相當嚴格,相關的醫用材料研發周期較長,材料使用前必須經過體外實驗、動物實驗、臨床實驗等不同階段。相關醫療器械的市場化之前,要通過國家藥品和醫療器械檢驗部門的批準,且申報審批程序周密而復雜,所以醫用高分子材料比一般性的材料研發成本高。醫用高分子材料及器械在人體臨床的要求,通常可以概括為以下六個方面:(1)功能性:因生物材料的用途而不盡相同,例如藥物緩釋的性能;(2)相容性:醫用材料或器械與生物體之間的相互作用,指應用材料的無毒性、無致癌性、無熱原、無免疫排斥等各種反應;(3)穩定性:主要指耐生物老化性;(4)可加工性:能夠加工成各種人體器官的復雜形狀;(5)機械強度:在極其復雜的人體環境中,長期植入體內不會減小機械強度;(6)抗消毒性:能接受環氧乙烷氣體消毒、酒精消毒、紫外滅菌、高壓煮沸等而不產生變性。
3 醫療器械發展趨勢
醫療器械加工將呈現出國際化、新材料、微型化的趨勢,新材料如液體硅橡膠體、固體硅橡膠,可用于醫用導管和球囊的制作、整形外科和護理傷口,各種硅橡膠都具有良好機械性能與醫療安全性能。目前使用的軟觸感熱塑彈性體材料TPE,廣泛應用于手術排液管、止血帶、蠕動泵軟管、導尿管、手術室圍簾、各種療傷用品等的生產。塑性體、彈性體、纖維樹脂、線性聚乙烯、聚碳酸酯樹脂已長期應用于醫療設備和裝置的生產以及保健衛生用品的生產。超高分子量聚乙烯廣范應用于過濾和低磨耗功能件在醫學整形領域中。醫用微擠出成型技術擠出直徑僅為0.002英寸(0.0508毫米)的醫用導管,應用于微創手術等醫療領域。
19世紀60年代,醫用高分子材料開始進入一個嶄新的發展時期。美國國立心肺研究所,多學科的交叉融合,品種豐富,性能完善,功能齊全。在21世紀,醫用高分子開始跨入全新時代。除大腦之外,所有的組織和臟器幾乎都可以用各種高分子材料來取代。從應用情況看,人工器官的功能從部分取代向完全取展;從短時間應用向長時期應用發展;從大型向小型化發展;從體外應用向體內植入發展;從與生命密切相關的部位向人工感覺器官、人工肢體發展。
4 生命質量在社會醫學領域的研究進展
隨著經濟文化的飛速發展,生命質量越來越受到各國人們的廣泛關注,生命質量逐漸成為衡量社會文明程度的重要標志。如何提高人們生命的質量成為社會醫學、經濟學等學科領域面臨一個重要課題。生命質量的研究,對人類社會發展的定義、歷史、進展的方向、歷史性問題等都具有重要的意義。
社會醫學領域內生命質量的研究已經經歷了3個時期。一是研究早期,早在1929年,Ogburn就對生命質量的研究表示了極大的興趣,開始了對生命質量現象的研究。二是成熟期,1957年Gurin聯合美國多所院校的心理生理衛生學院在全國范圍內進行了抽樣性質的調查,研究人民的精神健康和關于幸福感的觀念。三是分化期,生命質量研究在社會學和醫學的交叉學科領域得到了跨越性的發展,并逐漸呈現出關于生命質量研究熱潮。
醫用高分子在醫學臨床的使用是生命質量提高的一個重要體現。人工器官的移植使人們免除異體移植而可能帶來的抗體免疫之苦。醫用高分子人工心臟瓣膜、支架為心血管患者生命的延續提供了可能。血液透析的賽璐珞薄膜使腎病患者免受病痛的折磨。醫用高分子的應用不僅能夠使患者的生命得以延續,更能夠減輕甚至消除病人因疾病而帶來的痛苦,是生命質量得以提高的一個重要體現。
5 結語
生命質量的研究首先從人的生物屬性作為基本起點,進一步研究人的各種社會屬性,從多維的角度反映人類個體、在群體中的健康情況。生命質量的研究同時需要醫學、心理學、經濟學、社會學等多種學科的共同參與,醫用高分子材料和醫療器械的應用更符合社會發展和人們對于提高生命質量的真實需求。
參考文獻
[1]趙成如,夏毅然,史文紅.醫用高分子材料在醫療器械中的應用[J].中國醫療器械信息,2006,12(5):9-10.
[2]張承焱.醫用高分子材料的應用研究及發展(二)[J].中國醫療器械信息,2005,(11):17-22.
[3]馮新德.展望21世紀的高分子化學與工業[J].科學中國人,1997,(11).
[4]王守德,劉福田,程新.智能材料及其應用進展[J].濟南大學學報(自然科學版),2002,(1).
[5]李鵑,王宏,.生命質量在社會醫學領域的研究進展[J].中國社會醫學雜志,2010,27(2):65-67.
中圖分類號:tq464 文獻標識碼:a
我國目前的高分子材料生產和使用已躍居世界前列,每年產生幾百萬噸廢舊物。如此多的高聚物迫切需要進行生物可降解,以盡量減少對人類及環境的污染。生物可降解材料,是指在自然界微生物,如細菌、霉菌及藻類作用下,可完全降解為低分子的材料。這類材料儲存方便,只要保持干燥,不需避光,應用范圍廣,可用于地膜、包裝袋、醫藥等領域。生物可降解的機理大致有以下3 種方式: 生物的細胞增長使物質發生機械性破壞; 微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。按照上述機理,現將目前研究的幾種主要的可生物可降解的高分子材料介紹如下。
1生物可降解高分子材料概念及降解機理
生物可降解高分子材料是指在一定的時間和一定的條件下,能被微生物或其分泌物在酶或化學分解作用下發生降解的高分子材料。
生物可降解的機理大致有以下3種方式:生物的細胞增長使物質發生機械性破壞;微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。一般認為,高分子材料的生物可降解是經過兩個過程進行的。首先,微生物向體外分泌水解酶和材料表面結合,通過水解切斷高分子鏈,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物攝入人體內,經過種種的代謝路線,合成為微生物體物或轉化為微生物活動的能量,最終都轉化為水和二氧化碳。
因此,生物可降解并非單一機理,而是一個復雜的生物物理、生物化學協同作用,相互促進的物理化學過程。到目前為止,有關生物可降解的機理尚未完全闡述清楚。除了生物可降解外,高分子材料在機體內的降解還被描述為生物吸收、生物侵蝕及生物劣化等。生物可降解高分子材料的降解除與材料本身性能有關外,還與材料溫度、酶、ph值、微生物等外部環境有關。
2生物可降解高分子材料的類型
按來源,生物可降解高分子材料可分為天然高分子和人工合成高分子兩大類。按用途分類,有醫用和非醫用生物可降解高分子材料兩大類。按合成方法可分為如下幾種類型。
2.1微生物生產型
通過微生物合成的高分子物質。這類高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染環境的生物可降解塑料。如英國ici 公司生產的“biopol”產品。
2.2合成高分子型
脂肪族聚酯具有較好的生物可降解性。但其熔點低,強度及耐熱性差,無法應用。芳香族聚酯(pet) 和聚酰胺的熔點較高,強度好,是應用價值很高的工程塑料,但沒有生物可降解性。將脂肪族和芳香族聚酯(或聚酰胺) 制成一定結構的共聚物,這種共聚物具有良好的性能,又有一定的生物可降解性。
2.3天然高分子型
自然界中存在的纖維素、甲殼素和木質素等均屬可降解天然高分子,這些高分子可被微生物完全降解,但因纖維素等存在物理性能上的不足,由其單獨制成的薄膜的耐水性、強度均達不到要求,因此,它大多與其它高分子,如由甲殼質制得的脫乙酰基多糖等共混制得。
2.4摻合型
在沒有生物可降解的高分子材料中,摻混一定量的生物可降解的高分子化合物,使所得產品具有相當程度的生物可降解性,這就制成了摻合型生物可降解高分子材料,但這種材料不能完全生物可降解。
3生物可降解高分子材料的開發
3.1生物可降解高分子材料開發的傳統方法
傳統開發生物可降解高分子材料的方法包括天然高分子的改造法、化學合成法和微生物發酵法等。
3.1.1天然高分子的改造法
通過化學修飾和共混等方法,對自然界中存在大量的多糖類高分子,如淀粉、纖維素、甲殼素等能被生物可降解的天然高分子進行改性,可以合成生物可降解高分子材料。此法雖然原料充足,但一般不易成型加工,而且產量小,限制了它們的應用。
3.1.2化學合成法
模擬天然高分子的化學結構,從簡單的小分子出發制備分子鏈上含有酯基、酰胺基、肽基的聚合物,這些高分子化合物結構單元中含有易被生物可降解的化學結構或是在高分子鏈中嵌入易生物可降解的鏈段。化學合成法反應條件苛刻,副產品多,工藝復雜,成本較高。
3.1.3微生物發酵法
許多生物能以某些有機物為碳源,通過代謝分泌出聚酯或聚糖類高分子。但利用微生物發酵法合成產物的分離有一定困難,且仍有一些副產品。
3.2生物可降解高分子材料開發的新方法——酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶學的發展,酶在有機介質中表現出了與其在水溶液中不同的性質,并擁有了催化一些特殊反應的能力,從而顯示出了許多水相中所沒有的特點。
3.3酶促合成法與化學合成法結合使用
酶促合成法具有高的位置及立體選擇性,而化學聚合則能有效的提高聚合物的分子量,因此,為了提高聚合效率,許多研究者已開始用酶促法與化學法聯合使用來合成生物可降解高分子材料。
4生物可降解高分子材料的應用
目前生物可降解高分子材料主要有兩方面的用途:(1)利用其生物可降解性,解決環境污染問題,以保證人類生存環境的可持續發展。通常,對高聚物材料的處理主要有填埋、焚燒和再回收利用等3種方法,但這幾種方法都有其弊端。(2)利用其可降解性,用作生物醫用材料。目前,我國一年約生產3000 多億片片劑與控釋膠囊劑,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是傳統的糖衣片,而國際上發達國家80%以上使用水溶性高分子材料作薄膜衣片,因此,我國的片劑制造水平與國際先進水平有很大的差距。國外片劑和薄膜衣片多采用羥丙基甲纖維素,羥丙纖維素、丙烯酸樹脂、聚乙烯吡咯烷酮、醋酸纖維素、鄰苯二甲酸醋酸纖維素、羥甲基纖維素鈉、微晶纖維素、羥甲基淀粉鈉等。
參考文獻
[1]侯紅江,陳復生,程小麗,辛穎.可生物降解材料降解性的研究進展[j].塑料科技,2009,(03):89-93.
文章編號: 1005–6629(2012)5–0071–04 中圖分類號: G633.8 文獻標識碼: B
20世紀70年代,白川英樹、Heeger和MacDiarmid等人首次合成了聚乙炔薄膜,后來又經摻雜發現了可導電的高聚物,這就是導電高分子材料。導電高分子材料的發現,改變了人們對傳統塑料、橡膠等高分子材料是電、熱的不良導體的觀念,經過40多年的發展,導電高分子材料也從最初的聚乙炔發展到聚苯胺、聚吡咯、聚噻吩等數十種高分子材料,成為金屬材料和無機導電材料的優良替代品。而今這種導電高分子材料已廣泛應用于電子工業、航空航天工業之中,并對新型生物材料和新能源材料的開發產生巨大的影響。
1 高分子材料的分類及導電機理
導電高分子材料通常是指一類具有導電功能(包括半導電性、金屬導電性和超導電性)、電導率在10-6 S/cm以上的聚合物材料。這類高分子材料具有密度小、易加工、耐腐蝕、可大面積成膜,以及電導率可在絕緣體-半導體-金屬態(10-9到105 S/cm)的范圍里變化。這種特性是目前其他材料所無法比擬的。按照材料結構和制備方法的不同可把導電高分子材料分為結構型(或本征型)導電高分子材料和復合型導電高分子材料兩大類。
1.1 結構型導電高分子材料
結構型導電高分子材料是指高分子本身或少量摻雜后具有導電性質的高分子材料,一般是由電子高度離域的共軛聚合物經過適當電子受體或供體進行摻雜后制得的。結構型導電高分子材料具有易成型、質量輕、結構易變和半導體特性。最早發現的結構型高分子聚合物是用碘摻雜后形成的聚乙炔。這種摻雜后的聚乙炔的電導率高達105 S/cm。后來人們又相繼開發出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等導電高分子材料。這些材料摻雜后電導率可達到半導體甚至金屬導體的導電水平。
1.1.1 聚乙炔
純凈聚乙炔摻進施主雜質(堿金屬(Li、Na、K)等)或受主雜質(鹵素、AsF5、PF5等)后才能導電。與半導體不同的是,摻雜聚乙炔導電載流子是孤子。
聚乙炔中孤子是怎樣形成的呢?反式聚乙炔結構有兩種形式,互為鏡像,如圖1所示:
A相和B相能量相等,都是基態。如果原來整個反式聚乙炔處于A相,通過激發可以變為B相,中間出現的過渡區域,稱為正疇壁,反之稱為反疇壁。正疇壁稱為孤子,反疇壁稱為反孤子[1]。激發過程中所提供的能量只分布在正、反疇壁中,疇壁以外的部分能量不變。孤子態是由導帶和價帶各提供1/2個能級構成的,因此電荷Q=0,當用施主或受主雜質進行摻雜形成荷電孤子后,Q=±e。反式聚乙炔摻雜后,施主雜質向碳鏈提供電子,被激發形成的孤子帶有負電,如果是受主雜質,將從碳鏈中吸取電子,使孤子帶有正電。這樣孤子就成為反式聚乙炔中的導電載流子。
聚乙炔是目前世界上室溫下電導率最高的一種非金屬材料,它比金屬質量輕、延展性好,可用作太陽能電池、電磁開關、抗靜電油漆、輕質電線、紐扣電池和高級電子器件等。
1.1.2 聚對苯撐
聚對苯撐(PPP)有如圖2 所示兩種結構形式:
其中(a)式穩定,而(b)不穩定,很難單獨存在,當FeCl3與PPP摻雜時發生電荷轉移使PPP分子鏈成為正離子,而FeCl3以FeCl4-負離子的形式加到分子鏈上,同時FeCl3被還原成FeCl2[2],即:
2FeCl3+eFeCl4-+FeCl2
因此,摻雜過程實際上是一個氧化還原過程或電荷轉移過程。如果摻雜劑為受體分子,電荷轉移使高分子鏈成為正離子,摻雜劑為負離子,如果摻雜劑為給體時,則相反。聚對苯撐(PPP)的導電性和熱穩定性優良,有多種合成方法,常溫下為粉末,難以加工成型。電化學聚合可得到薄膜狀產品,但電化學聚合的產物聚合度小、電氣特性和機械性能低,可采用可溶性預聚體轉換工藝提高其聚合度。
1.1.3 聚噻吩
噻吩的分子結構如圖3所示,環上有兩類C原子,因此在發生聚合反應時會有3種連接結構,其中α-α連接時,噻吩環之間的扭轉角度最低,當其與一些復合材料發生摻雜時會通過π-π鍵共軛作用結合在一起,形成一個個相對獨立的導電單元,這些導電單元相對純的聚噻吩而言,具有更高的電導率[3]。
1.1.4 聚吡咯
聚吡咯(PPy)是少數穩定的導電高聚物之一,但純PPy只有經過合適摻雜劑摻雜后才能表現出較好的導電性。聚吡咯常用的摻雜劑有金屬鹽類如FeCl3,鹵素I2、Br2,質子酸如H2SO4等。不同種類的摻雜劑對PPy摻雜及形成高導電性的機理不同,但大部分具有氧化性的摻雜劑,其摻雜過程可以用電荷轉移機理來解釋。按此機理摻雜時,聚合物鏈給出電子,摻雜劑被還原成摻雜劑離子,然后此離子與聚合物鏈形成復合物以保持電中性。以FeCl3為氧化劑制備聚吡咯,通過電荷轉移形成復合物,反應按下式進行[4]:
1.1.5 聚苯胺
與其他導電高聚物一樣,聚苯胺(PAN)是共軛高分子,在高分子主鏈上交替重復單雙鏈結構,具有的價電子云分布在分子內,相互作用形成能帶等。其化學結構如圖4 所示。
聚苯胺可以看作是苯二胺與醌二亞胺的共聚物,x的值用于表征聚苯胺的氧化還原程度,不同的x值對應于不同的結構、組分及電導率。完全還原型(x=1)和完全氧化型(x=0)都為絕緣體,在0<x<1的任一狀態都能通過質子酸摻雜進行交換,當x=0.5時,電導率最大,且可通過聚合時氧化劑種類、濃度等條件控制x的大小。對其進行電化學或化學摻雜,使離子嵌入聚合物,以中和主鏈上的電荷,從而可使聚苯胺迅速并可逆地從絕緣態變成導電狀態,當質子酸進行摻雜時,質子化優先發生在分子鏈的亞胺氮原子上。質子酸發生離解后,生成的(H+)轉移至聚苯胺分子鏈上,使分子鏈中的亞胺上的氮原子發生質子化反應,生成元激發態極化子[5]。
聚苯胺(PAN)的研究后來居上,它與熱塑性塑料摻混具有良好的導電性,與其他導電高聚物相比,具有良好的環境穩定性,易制成柔軟、堅韌的膜,且價廉易得等優點。在日用商品及高科技方面有著廣泛的應用前景。
1.2 復合型導電高分子材料
復合型導電高分子材料是以高分子聚合物作基體,加入相當數量的導電物質組合而成的,兼有高分子材料的加工性和金屬導電性。既具有導電填料的導電性、導熱性以及電磁屏蔽性,又具有基體高聚物的熱塑性、柔韌性以及成型性,因而具有加工性好、工藝簡單、耐腐蝕、電阻率可調范圍大、價格低等很多優良的特點,已被廣泛應用于電子工業、信息產業以及其他各種工程應用中。復合型導電塑料是經物理改性后具有導電性的塑料,一般是將導電性物質如碳黑、金屬粉末、金屬粒子、金屬絲和碳纖維等摻混于樹脂中制成。在技術上比結構型導電塑料成熟,不少品種已商業化生產。
目前,關于復合型導電高分子材料的導電機理有宏觀滲流理論,即導電通路學說、微觀量子力學隧道效應理論和微觀量子力學場致發射效應等三種理論[6]。
(1)滲流理論:這一理論認為,當復合體系中導電填料用量增加到某一臨界用量時,體系電阻率急劇下降,體系電阻率-導電填料用量曲線出現一個狹小的突變區域,在此區域內導電填料的任何微小變化都會導致電阻率顯著變化,這種現象稱為滲濾現象,導電填料的臨界用量通常稱為滲濾閾值。
(2)隧道效應理論:該理論認為復合體系在導電填料用量較低時,導電粒子間距較大,混合物微觀結構中尚未形成導電網絡通道,此時仍不具有導電現象。這是因為此時高分子材料的導電性是由熱振動電子在導電粒子之間的遷移造成的。隧道效應現象幾乎僅僅發生在距離很接近的導電粒子之間,間隙過大的導電粒子之間沒有電流傳導行為。
(3)場致發射效應理論:該理論認為,當復合體系中導電填料用量較低,導電粒子間距較大、導電粒子內部電場很強時,電子將有很大幾率飛躍樹脂界面勢壘躍遷到相鄰電子離子上,產生場致發射電流,形成導電網絡。
1.2.1 炭黑添加型導電高分子材料
炭黑不僅價格低廉、導電性能持久穩定,而且可以大幅度調整復合材料的體積電阻率。因此,由炭黑填充制成的復合導電高分子材料是目前用途最廣、用量最大的一種導電材料。復合材料導電性與填充炭黑的填充量、種類、粒度、結構及空隙率有關,一般來說粒度越小,孔隙越多,結構度越高,導電性就越強。
1.2.2 金屬添加型導電聚合物
這類導電塑料具有優良的導電性,比傳統的金屬材料重量輕、易成型、生產效率高、成本低,進入20世紀80年代后,在電子計算機外殼、罩、承插件、傳輸帶等方面得到應用,成為最年輕、最有發展前途的新型導電和電磁屏蔽材料。常見的金屬類導電填充劑有金、銀、銅、鎳等細粉末。
2 導電高分子材料的廣泛應用
2.1 在電子元器件開發中的應用
2.1.1 用于防靜電和電磁屏蔽方面
導電高聚物最先應用是從防靜電開始的。將特定比例的十二烷基苯磺酸和對甲苯磺酸混合酸摻雜的PANI與聚(丙烯腈-丁二烯-苯乙烯)樹脂(ABS)共混擠出,制備了雜多酸摻雜PANI/ABS復合材料,通過現場聚合的方法在透明聚酯表面聚合了一層導電PANI,表面電阻可控制在106~109 Ω[7]。通過對復合材料EMI屏蔽的研究,發現在101 GHz下,復合材料的屏蔽效能隨其中PANI含量的增大而增大。摻雜能提高PANI的屏蔽效能。
2.1.2 導電高分子材料在芯片開發上的運用
在各種帶有微芯片的卡片以及條碼讀取設備上,高分子聚合物逐漸取代硅材料。塑料芯片的價格僅為硅芯片的1 %~10 %,并且由于其具有可溶性的特性而更易于加工處理[8]。目前國際上已經研制出集成了幾百個電子元器件的塑料芯片,采用這種導電塑料制造的新款芯片可以大大縮小計算機的體積,提高計算機的運算速度。
2.1.3 顯示材料中的導電高分子材料
有機發光二極管是由一層或多層半導體有機膜,加上兩頭電極封裝而成。在發光二極管的兩端加上3伏~5伏電壓,負極上的電子向有機膜移動,相反,與有機膜相連的正極上的電子向負極移動,這樣產生了相反運動方向的正負電荷載體,兩對電荷載體相遇,形成了“電子-空穴對”,并以發光的形式將能量釋放[9]。由于它發光強度高、色彩亮麗,光線角幾乎達到180度,可用于制造新一代的薄壁顯示器,應用在手機、掌上電腦等低壓電器上,也應用于金融信息顯示上,使圖像生動形象,并可圖文通顯。利用電致變色機理,還可用于制造電致變色顯示器、自動調光窗玻璃等。
2.2 在塑料薄膜太陽能電池開發中的應用
傳統的硅太陽能電池不僅價格昂貴,而且生產過程中消耗大量能源,因此成本昂貴,無法成為替代礦物燃料的能源,而塑料薄膜電池最大的特點就是生產成本低、耗能少。一旦技術成熟,可以在流水線上批量生產,使用范圍也很廣。制造塑料薄膜太陽能電池需要具有半導體性能的塑料。奧地利科學家用聚苯乙烯和碳摻雜形成富勒式結構的材料,再將它們加工成極薄的膜,然后在膜層上下兩面蒸發涂上銦錫氧化物或鋁作為電極。由于聚苯乙烯受到光照時會釋放出電子,而富勒式結構則會吸收電子,如果將燈泡接在這兩個電極上,電子開始流動就會使燈泡發光[10]。
2.3 在生物材料開發中的應用
在生命科學領域,導電高分子材料可制成智能材料,用于醫療和機器人制造方面。由于導電有機聚合物在微電流刺激下可以收縮或擴張,因而具備將電能轉化為機械能的潛力,這類導電聚合物組成的裝置在較小電流刺激下同樣表現出明顯的彎曲或伸張/收縮能力。為了把聚合物變成伸屈的手指活動,加上了含PPY的三層復合膜[PPY/緣塑料膜/PPY],其中一層PPY供給正電荷,另一層PPY供給負電荷。機器人手指工作:提供正電荷的一側凹陷進去,即體積收縮;提供負電荷的一側就鼓脹起來,體積膨脹,引起手指彎曲[11]。用改進的PAN和碳纖維合并起來作為纖維束驅動器,用它制造手指關節鏈(見圖5)其中關節的動作是借助于激光發動和纖維反抗成對的推拉控制,是由改變pH來激發動作的,并有激發纖維和反抗纖維的數量來控制位置[12]。
最新研究表明,DNA也可以具有導電性,因此,把導電塑料與生命科學結合起來,可以制造出人造肌肉和人造神經,以促進DNA的生長或修飾DNA,這將是導電塑料在應用上最重要的一個趨勢。
2.4 在新型航空材料開發中的應用
航空制造所用復合材料是一種聚合體樹脂制成的矩陣結構,由耐熱性能良好的增強型碳素纖維層或者玻璃纖維層膠合而成,再利用熔爐打造成所需要的形狀,以適應不同零件所承受的壓力。另外,像聚苯胺、聚吡咯可用于電磁屏蔽,涂有其聚合纖維的飛機,能吸收雷達信號,使飛機隱身,還可排除雷擊的危險。在導彈外面裹上一層這類聚合物,不僅可防止產生靜電,還可減輕導彈的重量[13]。
3 導電高分子材料的研究進展
20世紀70年代以來,電子、電氣、通訊產業的迅速崛起,推動了導電材料的快速發展。隨著導電材料使用環境的變化,對導電材料的發展也提出了新的要求。總體來說,導電高分子材料的發展主要圍繞以下幾個方面:
(1)開展分子水平上的研究和應用,開發新品種導電材料,尤其是高導電性導電聚合物、高強度導電高分子材料、可溶性導電高分子材料和分子導電材料,以便能夠制成“分子導線”、“分子電路”和“分子器件”。
(2)研究設計和合成結構高度穩定的、具有高熒光量子效率和高電荷載流子遷移率的共軛聚合物,制備出結構有序的導電聚合物薄膜材料[14]。
(3)導電材料多功能化。除具有導電性能外,還應具有優良的阻燃性、阻隔性、耐高溫、耐腐蝕、耐摩擦等性能,并在加大導電填料用量以提高導電性能的前提下,如何保持或增強復合材料的成型加工性能、力學性能和其他性能。
導電高分子材料的這些發展趨向預示著一個新的塑料電子學時代即將到來。
參考文獻:
[1]包詠.聚乙炔導電性介紹[J].大學化學,2003,18(5).
[2]韋瑋,張曉輝.聚對苯撐摻雜和導電性能研究[J].功能高分子學報,1998,(6).
[3]王紅敏,梁旦.聚噻吩/多壁碳納米管復合材料結構與導電理論的研究[J].化學學報,2008,(20).
[4]周媛媛,李松等.導電高分子材料聚吡咯的研究進展[J].化學推進劑與高分子材料,2008,6(1).
[5]聶玉靜,程正載.聚苯胺的合成及改性研究現狀[J].化工新型材料,2010,38(3):19.
[6]孫業斌,張新民.填充型導電高分子材料的研究進展[J].特種橡膠制品,2009,30(3):73~75.
[7]張柏宇,蘇小明等.聚苯胺導電復合材料研究進展及其應用[J].石化技術與應用,2004,22(6).
[9]李俊玲.神通廣大的導電塑料[J].百科知識,2005,(6):14~15.
[10]應仕杰.應用潛力極大的導電塑料[J].廣東塑料,2005,(12):9.
[11]李新貴,張瑞銳等.導電聚合物人工肌肉[J].材料科學與工程學報,2004,22(1):130~131.
中圖分類號TG1 文獻標識碼A 文章編號 1674—6708(2012)76—0157—02
材料是人類文明的標志,是社會生存和發展的基礎,人類支配和改造自然能力的提高都是通過新型材料的發現和利用來實現的。科學家們預言“21世紀將是智能材料的新時代”。所謂的智能材料指的是能夠根據周邊環境的變化而做出不同響應的一種新型材料。這其中材料對光、熱、電、磁以及溶劑等不同介質所做出的響應。根據智能材料所使用的材質的不同,我們可以將其大致歸為三類:金屬類智能材料、無機非金屬類智能材料和智能高分子材料。本文主要針對的是光致形變液晶高分子材料進行一些列研究和探討,希望能起到拋磚引玉的效果,讓更多的同行來共同關注這一領域的發展。
所謂的光致形變液晶高分子材料指的是能夠吸收特定波長的光,而改變自身形狀以及尺寸的一種高分子材料。光致形變液晶材料之所以能夠對光進行響應是因為其分子中含有感光官能團。
光致形變高分子要滿足一定的條件才能發生形變,Lendlein等人認為需要滿足下面三個條件[1]:1)感光官能團要以一定的方式引入到高分子材料中;2)當感光官能團與分子發生可逆的光異構化的時候,就能夠引起材料在外觀上的改變。因為這種變化可以傳遞給高分子鏈,高分子鏈在構象上的變化則表現在外觀形狀以及尺寸的變化上;3)該體系的維持需要有一定的交聯度,只有這樣才能穩定材料最初的形體狀態。光致形變液晶高分子材料要想有大的形變,需要高分子鏈在材料中呈有序排列,從而可以產生各向異性的響應,這樣產生的形變應力比較大。
Ikeda和俞燕蕾等人合成了一系列的液晶彈性體薄膜,他們把偶氮苯官能團引入到該薄膜中從而可以有效地實現液晶彈性體薄膜在方向上所產生的可控光致彎曲的發生。如圖1(多疇液晶彈性體的光致形變彎曲圖,其中白色箭頭的方向即為偏振光的偏振方向)所示,當多疇向列相液晶彈性體薄膜沿著任意方向發生彎曲的時候,彎曲后用570nm波長的可見光照射,薄膜可以恢復到原來的狀態,這是因為薄膜的彎曲方向與入射偏振紫外光的偏振方向一致,所以可以通過簡單的改變入射光偏振方向,即可簡單地精確控制薄膜的對彎曲方向。
Lee等人在最近研究出了一種全新的液晶高分子薄膜,這種薄膜在其主鏈上含有偶氮苯基團,而且薄膜也可以根據線性偏振光來控制自身所彎曲的方向變化。同時,這種薄膜也是一種非化學交聯的體系,所以這就讓它能夠廣泛應用于纖維制成或任意形狀的光響應材料。另外,該材料也證明了,光致形變液晶高分子材料不一定需要化學交聯。
類似纖毛功能的微型執行器是由van Oosten等人通過噴墨打印技術制備出的一種新執行器,這種結構的纖毛可以在有光照的情況下自行運動。如圖2(a)所示,當將它放置于水中的時候,它就可以產生變比較強烈的擾動,從而達到促進液體快速交融混合的目的。
另外,通過選擇不同的構件,可以實現對纖毛運動幅度大小的調控(圖2 b),最吸引人注意的一個特點是這種構件的制備可以使用不同類型的噴液進行操作,比如噴涂打印,如此,所使用的成本更加低廉,所以,這就也促使了大面積制備響應性的執行器件。在涉及到替代傳統的電驅動執行器方面,同樣有著非常明顯的優勢;圖2 c是該執行器成分的化學結構式。
圖2(a)當采用不同波長的光驅照射人工纖毛的時候,就會令其產生不規則的運動行為;(b)當采用紫外光進行照射的時候,液晶高分子纖毛在水面所產生的運動行為;(c)為構成執行器的液晶單體化學結構式。
結論:由于光的一些優異特點,使得光致形變液晶高分子材料在現實的應用中有著諸多的特點,這些特點使光驅動型執行器不需要使用其他的相關輔助設備,只需要通過改變自身的形狀及尺寸就可以將光能直接轉化為有用的機械能,所以,它將有望在微機械領域中大放光彩。
我國目前的高分子材料生產和使用已躍居世界前列,每年產生幾百萬噸廢舊物。如此多的高聚物迫切需要進行生物可降解,以盡量減少對人類及環境的污染。生物可降解材料,是指在 自然 界微生物,如細菌、霉菌及藻類作用下,可完全降解為低分子的材料。這類材料儲存方便,只要保持干燥,不需避光,應用范圍廣,可用于地膜、包裝袋、醫藥等領域。生物可降解的機理大致有以下3 種方式: 生物的細胞增長使物質發生機械性破壞; 微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。按照上述機理,現將目前研究的幾種主要的可生物可降解的高分子材料介紹如下。
1、生物可降解高分子材料概念及降解機理
生物可降解高分子材料是指在一定的時間和一定的條件下,能被微生物或其分泌物在酶或化學分解作用下發生降解的高分子材料。
生物可降解的機理大致有以下3種方式:生物的細胞增長使物質發生機械性破壞;微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。一般認為,高分子材料的生物可降解是經過兩個過程進行的。首先,微生物向體外分泌水解酶和材料表面結合,通過水解切斷高分子鏈,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物攝入人體內,經過種種的代謝路線,合成為微生物體物或轉化為微生物活動的能量,最終都轉化為水和二氧化碳。
因此,生物可降解并非單一機理,而是一個復雜的生物物理、生物化學協同作用,相互促進的物理化學過程。到目前為止,有關生物可降解的機理尚未完全闡述清楚。除了生物可降解外,高分子材料在機體內的降解還被描述為生物吸收、生物侵蝕及生物劣化等。生物可降解高分子材料的降解除與材料本身性能有關外,還與材料溫度、酶、ph值、微生物等外部環境有關。
2、生物可降解高分子材料的類型
按來源,生物可降解高分子材料可分為天然高分子和人工合成高分子兩大類。按用途分類,有醫用和非醫用生物可降解高分子材料兩大類。按合成方法可分為如下幾種類型。
2.1微生物生產型
通過微生物合成的高分子物質。這類高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染環境的生物可降解塑料。如英國ici 公司生產的“biopol”產品。
2.2合成高分子型
脂肪族聚酯具有較好的生物可降解性。但其熔點低,強度及耐熱性差,無法應用。芳香族聚酯(pet) 和聚酰胺的熔點較高,強度好,是應用價值很高的工程塑料,但沒有生物可降解性。將脂肪族和芳香族聚酯(或聚酰胺) 制成一定結構的共聚物,這種共聚物具有良好的性能,又有一定的生物可降解性。
2.3天然高分子型
自然界中存在的纖維素、甲殼素和木質素等均屬可降解天然高分子,這些高分子可被微生物完全降解,但因纖維素等存在物理性能上的不足,由其單獨制成的薄膜的耐水性、強度均達不到要求,因此,它大多與其它高分子,如由甲殼質制得的脫乙酰基多糖等共混制得。
2.4摻合型
在沒有生物可降解的高分子材料中,摻混一定量的生物可降解的高分子化合物,使所得產品具有相當程度的生物可降解性,這就制成了摻合型生物可降解高分子材料,但這種材料不能完全生物可降解。
3、生物可降解高分子材料的開發
3.1生物可降解高分子材料開發的傳統方法
傳統開發生物可降解高分子材料的方法包括天然高分子的改造法、化學合成法和微生物發酵法等。
3.1.1天然高分子的改造法
通過化學修飾和共混等方法,對 自然 界中存在大量的多糖類高分子,如淀粉、纖維素、甲殼素等能被生物可降解的天然高分子進行改性,可以合成生物可降解高分子材料。此法雖然原料充足,但一般不易成型加工,而且產量小,限制了它們的應用。
3.1.2化學合成法
模擬天然高分子的化學結構,從簡單的小分子出發制備分子鏈上含有酯基、酰胺基、肽基的聚合物,這些高分子化合物結構單元中含有易被生物可降解的化學結構或是在高分子鏈中嵌入易生物可降解的鏈段。化學合成法反應條件苛刻,副產品多,工藝復雜,成本較高。
3.1.3微生物發酵法
許多生物能以某些有機物為碳源,通過代謝分泌出聚酯或聚糖類高分子。但利用微生物發酵法合成產物的分離有一定困難,且仍有一些副產品。
3.2生物可降解高分子材料開發的新方法——酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶學的 發展 ,酶在有機介質中表現出了與其在水溶液中不同的性質,并擁有了催化一些特殊反應的能力,從而顯示出了許多水相中所沒有的特點。
3.3酶促合成法與化學合成法結合使用
酶促合成法具有高的位置及立體選擇性,而化學聚合則能有效的提高聚合物的分子量,因此,為了提高聚合效率,許多研究者已開始用酶促法與化學法聯合使用來合成生物可降解高分子材料
4、生物可降解高分子材料的應用
目前生物可降解高分子材料主要有兩方面的用途:(1)利用其生物可降解性,解決環境污染問題,以保證人類生存環境的可持續發展。通常,對高聚物材料的處理主要有填埋、焚燒和再回收利用等3種方法,但這幾種方法都有其弊端。(2)利用其可降解性,用作生物醫用材料。目前,我國一年約生產3000 多億片片劑與控釋膠囊劑,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是傳統的糖衣片,而國際上發達國家80%以上使用水溶性高分子材料作薄膜衣片,因此,我國的片劑制造水平與國際先進水平有很大的差距。國外片劑和薄膜衣片多采用羥丙基甲纖維素,羥丙纖維素、丙烯酸樹脂、聚乙烯吡咯烷酮、醋酸纖維素、鄰苯二甲酸醋酸纖維素、羥甲基纖維素鈉、微晶纖維素、羥甲基淀粉鈉等。
我國目前的高分子材料生產和使用已躍居世界前列,每年產生幾百萬噸廢舊物。如此多的高聚物迫切需要進行生物可降解,以盡量減少對人類及環境的污染。生物可降解材料,是指在自然界微生物,如細菌、霉菌及藻類作用下,可完全降解為低分子的材料。這類材料儲存方便,只要保持干燥,不需避光,應用范圍廣,可用于地膜、包裝袋、醫藥等領域。生物可降解的機理大致有以下3種方式:生物的細胞增長使物質發生機械性破壞;微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。按照上述機理,現將目前研究的幾種主要的可生物可降解的高分子材料介紹如下。
一、生物可降解高分子材料概念及降解機理
生物可降解高分子材料是指在一定的時間和一定的條件下,能被微生物或其分泌物在酶或化學分解作用下發生降解的高分子材料。
生物可降解的機理大致有以下3種方式:生物的細胞增長使物質發生機械性破壞;微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。一般認為,高分子材料的生物可降解是經過兩個過程進行的。首先,微生物向體外分泌水解酶和材料表面結合,通過水解切斷高分子鏈,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物攝入人體內,經過種種的代謝路線,合成為微生物體物或轉化為微生物活動的能量,最終都轉化為水和二氧化碳。
因此,生物可降解并非單一機理,而是一個復雜的生物物理、生物化學協同作用,相互促進的物理化學過程。到目前為止,有關生物可降解的機理尚未完全闡述清楚。除了生物可降解外,高分子材料在機體內的降解還被描述為生物吸收、生物侵蝕及生物劣化等。生物可降解高分子材料的降解除與材料本身性能有關外,還與材料溫度、酶、PH值、微生物等外部環境有關。
二、生物可降解高分子材料的類型
按來源,生物可降解高分子材料可分為天然高分子和人工合成高分子兩大類。按用途分類,有醫用和非醫用生物可降解高分子材料兩大類。按合成方法可分為如下幾種類型。
2.1微生物生產型
通過微生物合成的高分子物質。這類高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染環境的生物可降解塑料。如英國ICI公司生產的“Biopol”產品。
2.2合成高分子型
脂肪族聚酯具有較好的生物可降解性。但其熔點低,強度及耐熱性差,無法應用。芳香族聚酯(PET)和聚酰胺的熔點較高,強度好,是應用價值很高的工程塑料,但沒有生物可降解性。將脂肪族和芳香族聚酯(或聚酰胺)制成一定結構的共聚物,這種共聚物具有良好的性能,又有一定的生物可降解性。
2.3天然高分子型
自然界中存在的纖維素、甲殼素和木質素等均屬可降解天然高分子,這些高分子可被微生物完全降解,但因纖維素等存在物理性能上的不足,由其單獨制成的薄膜的耐水性、強度均達不到要求,因此,它大多與其它高分子,如由甲殼質制得的脫乙酰基多糖等共混制得。
2.4摻合型
在沒有生物可降解的高分子材料中,摻混一定量的生物可降解的高分子化合物,使所得產品具有相當程度的生物可降解性,這就制成了摻合型生物可降解高分子材料,但這種材料不能完全生物可降解。
三、生物可降解高分子材料的開發
3.1生物可降解高分子材料開發的傳統方法
傳統開發生物可降解高分子材料的方法包括天然高分子的改造法、化學合成法和微生物發酵法等。
3.1.1天然高分子的改造法
通過化學修飾和共混等方法,對自然界中存在大量的多糖類高分子,如淀粉、纖維素、甲殼素等能被生物可降解的天然高分子進行改性,可以合成生物可降解高分子材料。此法雖然原料充足,但一般不易成型加工,而且產量小,限制了它們的應用。
3.1.2化學合成法
模擬天然高分子的化學結構,從簡單的小分子出發制備分子鏈上含有酯基、酰胺基、肽基的聚合物,這些高分子化合物結構單元中含有易被生物可降解的化學結構或是在高分子鏈中嵌入易生物可降解的鏈段。化學合成法反應條件苛刻,副產品多,工藝復雜,成本較高。
3.1.3微生物發酵法
許多生物能以某些有機物為碳源,通過代謝分泌出聚酯或聚糖類高分子。但利用微生物發酵法合成產物的分離有一定困難,且仍有一些副產品。
3.2生物可降解高分子材料開發的新方法——酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶學的發展,酶在有機介質中表現出了與其在水溶液中不同的性質,并擁有了催化一些特殊反應的能力,從而顯示出了許多水相中所沒有的特點。
3.3酶促合成法與化學合成法結合使用
酶促合成法具有高的位置及立體選擇性,而化學聚合則能有效的提高聚合物的分子量,因此,為了提高聚合效率,許多研究者已開始用酶促法與化學法聯合使用來合成生物可降解高分子材料
四、生物可降解高分子材料的應用
目前生物可降解高分子材料主要有兩方面的用途:(1)利用其生物可降解性,解決環境污染問題,以保證人類生存環境的可持續發展。通常,對高聚物材料的處理主要有填埋、焚燒和再回收利用等3種方法,但這幾種方法都有其弊端。(2)利用其可降解性,用作生物醫用材料。目前,我國一年約生產3000多億片片劑與控釋膠囊劑,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是傳統的糖衣片,而國際上發達國家80%以上使用水溶性高分子材料作薄膜衣片,因此,我國的片劑制造水平與國際先進水平有很大的差距。國外片劑和薄膜衣片多采用羥丙基甲纖維素,羥丙纖維素、丙烯酸樹脂、聚乙烯吡咯烷酮、醋酸纖維素、鄰苯二甲酸醋酸纖維素、羥甲基纖維素鈉、微晶纖維素、羥甲基淀粉鈉等。
1 生物可降解高分子材料的含義及降解機理
生物可降解高分子材料是指在一定的時間和一定的條件下,能被微生物或其分泌物在酶或化學分解作用下發生降解的高分子材料。生物可降解的機理大致有以下三種方式:生物的細胞增長使物質發生機械性破壞;微生物對聚合物作用產生新的物質;酶的直接作用,即微生物侵蝕高聚物從而導致裂解。一般認為,高分子材料的生物可降解是經過兩個過程進行的。首先,微生物向體外分泌水解酶和材料表面結合,通過水解切斷高分子鏈,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物攝入人體內,經過種種的代謝路線,合成為微生物體物或轉化為微生物活動的能量,最終都轉化為水和二氧化碳。因此,生物可降解并非單一機理,而是一個復雜的生物物理、生物化學協同作用,相互促進的物理化學過程。到目前為止,有關生物可降解的機理尚未完全闡述清楚。除了生物可降解外,高分子材料在機體內的降解還被描述為生物吸收、生物侵蝕及生物劣化等。生物可降解高分子材料的降解除與材料本身性能有關外,還與材料溫度、酶、PH值、微生物等外部環境有關。
2 生物可降解高分子材料的類型
按材料來源,生物可降解高分子材料可分為天然高分子和人工合成高分子兩大類。按用途分類,有醫用和非醫用生物可降解高分子材料兩大類。按合成方法可分為如下幾種類型。
2.1 微生物生產型
通過微生物合成的高分子物質。這類高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染環境的生物可降解塑料。
2.2 合成高分子型
脂肪族聚酯具有較好的生物可降解性。但其熔點低,強度及耐熱性差,無法應用。芳香族聚酯(PET)和聚酰胺的熔點較高,強度好,是應用價值很高的工程塑料,但沒有生物可降解性。將脂肪族和芳香族聚酯(或聚酰胺)制成一定結構的共聚物,這種共聚物具有良好的性能,又有一定的生物可降解性。
2.3 天然高分子型
自然界中存在的纖維素、甲殼素和木質素等均屬可降解天然高分子,這些高分子可被微生物完全降解,但因纖維素等存在物理性能上的不足,由其單獨制成的薄膜的耐水性、強度均達不到要求,因此,它大多與其它高分子,如由甲殼質制得的脫乙酰基多糖等共同混制。
2.4 摻混型
在沒有生物可降解的高分子材料中,摻混一定量的生物可降解的高分子化合物,使所得產品具有相當程度的生物可降解性,這就制成了摻合型生物可降解高分子材料,但這種材料不能完全生物可降解。
3 生物可降解高分子材料的研發
3.1 傳統方法
傳統利用生物可降解高分子材料的方法主要包括:天然高分子的改造法、化學合成法和微生物發酵法等。(1)天然高分子的改造法。通過化學修飾和共混等方法,對自然界中存在大量的多糖類高分子,如淀粉、纖維素、甲殼素等能被生物可降解的天然高分子進行改性,可以合成生物可降解高分子材料。此法雖然原料充足,但一般不易成型加工,而且產量小,限制了它們的應用。②化學合成法。模擬天然高分子的化學結構,從簡單的小分子出發制備分子鏈上含有酯基、酰胺基、肽基的聚合物,這些高分子化合物結構單元中含有易被生物可降解的化學結構或是在高分子鏈中嵌入易生物可降解的鏈段。化學合成法反應條件苛刻,副產品多,工藝復雜,成本較高。(2)微生物發酵法。許多生物能以某些有機物為碳源,通過代謝分泌出聚酯或聚糖類高分子。但利用微生物發酵法合成產物的分離有一定困難,且仍有一些副產品。
3.2 酶促合成
用酶促法合成生物可降解高分子材料,得益于非水酶學的發展,酶在有機介質中表現出了與其在水溶液中不同的性質,并擁有了催化一些特殊反應的能力,從而顯示出了許多水相中所沒有的特點。
3.3 酶促合成法與化學合成法結合使用
酶促合成法具有高的位置及立體選擇性,而化學聚合則能有效的提高聚合物的分子量,因此,為了提高聚合效率,許多研究者已開始用酶促法與化學法聯合使用來合成生物可降解高分子材料。
4 結語
室內設計是結合了藝術與技術的綜合性的工程,他不僅需要規范標準的設計工藝,也追求著有創造力的設計理念和設計思想。因為材料是一種能將藝術形式與設計融合到一體的介質,室內所用的材料全部都是設計的現實支撐,創新型的不僅僅是材料使用方面的巨大的進步,更是整個設計的理念的推動力。
1高分子材料的概況
材料從大意上來說是對于室內設計中所應用的物質的整體稱呼,并且不被形態,顏色以及材料所牽制。不管是宏觀下的世界當中的物質的特征,比如:硬度,氣味,色彩以及熔點等,還是在微觀的角度來看物質的組成,結構等相關因素,室內設計對于材料的考慮都是比較整體而且全面的。與此同時,設計材料的創新和發展也可以推動設計的理念創新,高分子材料是整個材料科學在近代當中取得的較大的進步,對各個相關的領域都有著不可置疑的推動作用,人們對于設計在室內的要求是會越來越高的也是永無止境的,高分子材料也正是因為這樣才得以存在。
2材料,藝術以及技術在室內設計當中的統一性
室內設計的中心思想就是創造出實用性與藝術的審美完美結合的居住環境,一并實現。創造力是沒有止境的但是室內設計的實用性對于平衡技術與藝術的結合,對于設計師的技能要求比較高,室內設計以建筑物為主要的載體,雖然建筑工程對于理論非常的完善,但是對于技術性與藝術性在室內設計當中并沒有形成一套完善的體系。因為技術性和藝術性在室內設計當中都在一些方面依托于材料的應用,所以以材料為整體切入點研究技術與藝術相統一并且應用于室內設計當中。
3高分子材料應用于室內設計當中
對于人類文明史的劃分,相對具有代表性的就應該是據物資資料來進行相應的歷史劃分了,正因為這樣,材料也就是物質資料生產水平的直接體現形式。在整個的建筑工程發展歷史當中,因為建筑材料的使用有所不同導致東西方的建筑有著很大的差異,室內設計的風格大有不同。在東方文明當中將會以木材作為建筑當中的基本材料來使用,木質材料作為設計的基本依托,由此來漸漸的產生出梁架變換的內部設計的模式,例如:架,格,屏風以及隔扇等。而且因為木質材料具有強大的可加工性,漸漸的引發建筑變成了精于追求自然,技藝等顯著的設計風格在室內設計當中。對于西方文明,大多數用石質為基礎的材料,漸漸的形成出厚重感獨特的加工特性,和融合了雕塑藝術的西方建筑以及室內設計多有的裝飾手段,以厚重,宏大以及精美的雕刻藝術為主要的設計風格。正因為這樣,在建筑領域當中的室內設計就是通過用材料把建筑設計的藝術性和其建筑藝術的實用性相互捆綁,從某一個角度來看,材料決定著室內實際與建筑工藝的發展方向,以及藝術風格。對于高分子材料而言,基于其本身的材料建筑的特性與室內設計的發展也表現出了鮮明的時代的特征。
4結束語
高分子材料有著質量較輕,容易加工,成本較低等多種優點,同時還有著各種各樣的特性及功能。光電來轉化高分子的材料可以用于室內的光線或者電力的供應;仿生的高分子材料更加可以應用于滿足人們的生活當中的力學,潔凈,以及熱血方面的需求;環境敏感性的高分子材料也可以充分利用與環境的改變,未來還會有著更多的高分子材料的出現,以及目前已經應用的高分子材料的特性也會更加的完善。以塑料為高分子材料的代表當做現代建筑當中的主要材料,是因為高分子材料在室內設計當中的應用分析以及產生的重要作用。一塑料為載體的材料合成技術可能將是室內設計領域的新的發展方向。在這個新技術不斷出現的時代,材料將是室內設計與藝術的審美的一種重要的融合媒介。特別是對于室內設計的領域當中對于設計思想變革產生的巨大影響的材料,高分子材料。高分子材料的影響力,優越性和發展的趨勢有著極其重要的意義。
參考文獻
[1]李進.室內設計中現成品材料的運用與研究[D].北京:中央美術學院,2008.
[2]馬素德,宋國林,樊鵬飛,等.相變儲能材料的應用及研究進展[J].高分子材料科學與工程,2010,26(8):161~164.